
Genetic control of branching patterns in grass
inflorescences
Elizabeth A. Kellogg 1,*,†

1 Donald Danforth Plant Science Center, St Louis, Missouri 63132, USA

*Author for correspondence: ekellogg@danforthcenter.org
†Senior author

The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the
Instructions for Authors (https://academic.oup.com/plcell) is: Elizabeth A. Kellogg (ekellogg@danforthcenter.org).

Abstract
Inflorescence branching in the grasses controls the number of florets and hence the number of seeds. Recent data on the under-
lying genetics come primarily from rice and maize, although new data are accumulating in other systems as well. This review fo-
cuses on a window in developmental time from the production of primary branches by the inflorescence meristem through to
the production of glumes, which indicate the transition to producing a spikelet. Several major developmental regulatory mod-
ules appear to be conserved among most or all grasses. Placement and development of primary branches are controlled by con-
served auxin regulatory genes. Subtending bracts are repressed by a network including TASSELSHEATH4, and axillary branch
meristems are regulated largely by signaling centers that are adjacent to but not within the meristems themselves. Gradients of
SQUAMOSA-PROMOTER BINDING-like and APETALA2-like proteins and their microRNA regulators extend along the inflores-
cence axis and the branches, governing the transition from production of branches to production of spikelets. The relative speed
of this transition determines the extent of secondary and higher order branching. This inflorescence regulatory network is modi-
fied within individual species, particularly as regards formation of secondary branches. Differences between species are caused
both by modifications of gene expression and regulators and by presence or absence of critical genes. The unified networks de-
scribed here may provide tools for investigating orphan crops and grasses other than the well-studied maize and rice.

Introduction
Grass dominated ecosystems cover �40% of the Earth’s land
surface (Lehmann et al., 2019; Griffith et al., 2020) and pro-
vide over 50% of the world’s calories, whether consumed di-
rectly or fed to animals which are then consumed by
humans (FAO, 2003). Central to the ecological and eco-
nomic roles of grasses is the inflorescence, the complex set
of flowers that produces seeds. The combined number and
size of seeds contribute to higher fitness in the wild and
higher yield in cultivation. Accordingly, inflorescence struc-
ture and flower/seed production have been the target of
both natural and human selection.

Grass inflorescence development is often described by in-
voking shifting meristem identity. As a shoot apical

meristem (SAM) producing leaves on its flanks changes to
producing bracts, branches, and floral meristems (FMs), it is
described as acquiring inflorescence meristem (IM) identity.
Within the inflorescence, similar shifts specify branch meri-
stem (BM) identity and FM identity. In addition, in grasses a
distinct structure, the spikelet (a tiny spike), is interpolated
developmentally between the BM and FM and arises from a
spikelet meristem (SM). The metaphor of meristem identity
implies that the meristem is itself somehow autonomous
and distinct from both the surrounding cells and also from
other meristems on the plant.

In a thought-provoking paper, Whipple (2017) observed
that the concept of meristem identity also implies the exis-
tence of selector genes whose presence confers particular
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characteristics on a meristem. While such selector genes are
known for FMs, they have been elusive for other meristem
types. Instead, he notes that the boundary between a meri-
stem and its subtending bracts has emerged as an impor-
tant signaling center (Whipple, 2017), shifting the metaphor
from the meristem as a master controller of its own fate to
the meristem as an emergent structure, the result of dispa-
rate inputs and outputs.

Another common metaphor is that of a developmental
switch, a gene being either on or off. However, gene regula-
tion is often quantitative, more like a rheostat than a binary
switch, leading to metaphors of phase change (e.g. Kyozuka,
2014) and gradual transitions from one state to another. At
the beginning and end of the transition, a structure may be
recognizable as an IM, BM, or SM, but the boundaries be-
tween them may not be sharp, although a gradual transition
might ultimately trigger a switch. These metaphors—identity
and signaling centers, switches, and rheostats—currently co-
exist productively and are themes that occur throughout
this review.

This review focuses on a narrow but critical developmen-
tal window, from the production of primary BMs by the IM
through to specification of spikelets. These are processes
that vary extensively in response to natural (evolutionary)
and human (agricultural) selection. Many of the genes
mentioned here have additional functions in vegetative
growth and in spikelet development, but pleiotropy may ob-
scure their role in any single process, hence the focus on a
narrow slice of time. Specifically, I do not address the vege-
tative–reproductive transition and control of flowering time,
which are thoroughly discussed elsewhere (e.g. Distelfeld
et al., 2009; Lee and An, 2015; Doust et al., 2017; Woods
et al., 2019), nor do I review the fundamental controls of IM
size, which are also covered in recent reviews (e.g. Bommert
and Whipple, 2018). The extensive data on floret structure,
form, and function (e.g. Schrager-Lavelle et al., 2017; Shen
et al., 2021) are also not covered here. Some of these topics
are included in the related review by Richardson and Hake
(2022), which focuses particularly on the incomparable data
available from maize, and also recent species-focused reviews
on rice (Li et al., 2021a, 2021b, 2021c) and Triticeae (Gao
et al., 2019; Gauley and Boden, 2019; Sakuma and
Schnurbusch, 2020). Protein-coding genes discussed in this
review are listed in Supplemental Table S1.

Grass inflorescences are branched structures
with branches producing spikelets
The grass family (Poaceae or Gramineae, both correct
names) includes about 700 genera and 12,000 species
(Kellogg, 2015; Soreng et al., 2017). The family is divided into
12 subfamilies, 3 of which (Anomochlooideae, Pharoideae,
and Puelioideae) are successive sisters to the remainder of
the family and together include only a handful of species
(GPWG II, 2012; Saarela et al., 2018; Figure 1). The other
nine subfamilies fall into two large clades that are strongly
supported by phylogenetic data and are named by the

acronym for the included subfamilies (Kellogg, 2015; Soreng
et al., 2017). The BOP clade (with �40% of the species in
the family) includes Bambusoideae, Oryzoideae, and
Pooideae, while the PACMAD clade (with �60% of the spe-
cies) includes Panicoideae, Aristidoideae, Chloridoideae,
Micrairoideae, Arundinoideae, and Danthonioideae.

Grass inflorescences are distinctive. In all but the four spe-
cies of Anomochlooideae (Judziewicz and Soderstrom, 1989),
the flowers (florets) are borne in units known as spikelets
(GPWG, 2001; Figure 2). Each spikelet consists of sterile
bracts (glumes, generally two) and a spikelet axis bearing
one or more florets. The number of florets per spikelet is
generally fixed within a species or clade or varies within a
narrow range. The flowers themselves are zygomorphic, with
a large subtending bract (the lemma), in the axil of which is
a conventional, if highly reduced, flower with an outer peri-
anth (the palea), inner perianth (lodicules), stamens, and a
gynoecium with a plumose stigma and single ovule. Florets
are thus determinate structures and their formation marks
an end to any further branching processes.

Grass inflorescences are often described as spikes, racemes,
or panicles, borrowing terminology from dicots and non-
grass monocots. However, because the terminal units are
spikelets, which are themselves inflorescences, rather than
flowers as in dicots, the grass inflorescence is in fact a com-
pound structure, an inflorescence of spikes, and is therefore
technically a synflorescence (Weberling, 1989; Vegetti and
Weberling, 1996). I will use the more common term inflores-
cence here even though it is somewhat inaccurate.

In this review, I treat the grass family as a single genetic
system (Bennetzen and Freeling, 1993), with insights coming
from cross-species comparisons as much as from detailed
studies in a single species. Data come largely from rice
(Oryza sativa, tribe Oryzeae, subfamily Oryzoideae) and
maize (Zea mays, tribe Andropogoneae, subfamily
Panicoideae), barley, and wheat (Hordeum vulgare and
Triticum aestivum, respectively, tribe Triticeae, subfamily
Pooideae; Figures 1–3; gene names in Supplemental
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Figure 1 Phylogeny of the grass family summarized from GPWG II
(2012); Soreng et al. (2017), and Saarela et al. (2018). Within the
grasses, terminal taxa are subfamilies; representative crops are given
where applicable.
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Table S1), although I will also mention Brachypodium dis-
tachyon (tribe Brachypodieae, subfamily Pooideae), and
green millet (Setaria viridis, tribe Paniceae, subfamily
Panicoideae). No universal system of gene nomenclature
exists for the grasses, so for consistency gene and protein
names are written in all capital letters, with the gene names
italicized. I do not try to distinguish orthographically be-
tween dominant and recessive alleles.

Inflorescence architecture is the outcome of
a repeating series of developmental decisions
The pattern of inflorescence architecture is governed by
the relative timing of shifts from branch-producing to

spikelet-producing meristems, what Kyozuka (2014) has de-
scribed as a “meristem phase change.” In all grasses after the
transition of the SAM to reproductive activity, an IM or BM
has only three possible fates: (1) it can function as a branch-
producing meristem, with new BMs arising on its flanks; (2)
it can form a spikelet (SM), or (3) it can cease to function,
with cell division and growth coming to a halt. If the BM
produces higher order BMs, these in turn have the same set
of developmental options. Production of glumes marks the
transition from a BM to an SM, and further development is
canalized to produce one or more florets.

The inflorescence architecture of grasses is well docu-
mented and shows that the number of iterations of these
developmental decisions varies among species and genera.
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Figure 2 Images and diagrams of spikelets of wheat (Triticum turgidum cv. “Kronos”), rice (O. sativa), barley (H. vulgare, only central spikelet dia-
grammed), and maize (Z. mays, tassel spikelet). Paleas not visible in photos of wheat and barley. Shaded ovals (yellow) indicate floral organs as
shown in inset, upper right. Glumes indicated by thickened arcs (green); lemmas and paleas, black arcs; suppressed meristems, x. Scale bars,
0.5 mm. Distance between structures in diagrams is exaggerated for clarity. Image of barley spikelet reproduced from Komatsuda et al. (2007);
copyright 2007 National Academy of Sciences. Scale bar lacking in original. an, anther; gl, glume; lo, lodicle; pa, palea; st, stigma.
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However, for any given species, the number of BMs pro-
duced by an IM or other BMs is fixed within a narrow range
as is the number of SMs.

Inflorescence development may be modeled as a series of
on–off switches, with shifting patterns of identity (Kellogg,
2000). In contrast, Prusinkiewicz et al. (2007) and Harder
and Prusinkiewicz (2013) describe a model more similar to a
rheostat with continually varying amounts of what they
term “vegetativeness.” The models are not mutually exclu-
sive, in that the switch model can be viewed as a simple ver-
sion of the rheostat model. However, the latter model has
never been elaborated formally to accommodate the com-
plexities of grass inflorescence architecture.

The branching pattern of grass inflorescences is estab-
lished early in development when the IM is still enclosed by
the sheathing leaf bases. Elongation of inflorescence interno-
des occurs later (Patil et al., 2019; McKim, 2020; E. A.
Kellogg, personal observation). Most research has focused
on branching patterns because they determine the number
of florets and hence the number of grains, and this review
reflects that same bias, with few comments on elongation.
Nonetheless, inflorescence elongation patterns may have fit-
ness consequences in both natural and agricultural settings,
for example, by determining whether the florets must polli-
nate themselves or can shed pollen away from the plant, or
determining the propensity of the inflorescence stalk to
break or be attacked by herbivores.

Whether the IM ultimately produces a spikelet is indepen-
dent of whether the primary BMs terminate in spikelets or
simply cease growing. The IM ceases producing BMs and
ends as an undifferentiated dome or axis in maize (Z. mays),
rice (O. sativa), signal grass (Brachiaria decumbens), and fin-
ger millet (Eleusine coracana; Figure 3), whereas it ultimately
becomes an SM in wheat (T. aestivum), ryegrass (Lolium
spp.), sorghum (Sorghum bicolor), and oats (Avena sativa;
Butzin, 1979; Moncur, 1981; Liu et al., 2007; Reinheimer and
Vegetti, 2008; Reinheimer et al., 2009, 2013; Kellogg et al.,
2013). While presence of a terminal spikelet is consistent
within a species or genus, it is labile in evolutionary time
(Reinheimer and Vegetti, 2008; Reinheimer et al., 2013;
Kellogg, 2015), suggesting it can be altered easily by natural
selection but is generally not a plastic response to the
environment.

Placement of bracts is governed by auxin and
specifies branching patterns

The role of auxin
Branches in all plants form from meristems in the axils of
leaves or bracts, which in turn are controlled by local auxin
maxima leading to lateral organ production (Reinhardt
et al., 2003; Smith et al., 2006). In rice and maize, auxin accu-
mulates in all BMs of the inflorescence, as well as in the pri-
mordia of glumes and other floral organs (Yang et al., 2017).
Auxin biosynthesis, transport, and signal transduction have
been recently reviewed by Matthes et al. (2019), who pro-
vide detailed information on the molecular evolution and

expression of auxin-related genes in rice and maize and
compare auxin biology in grasses with that in Arabidopsis.
Bract and axillary branch formation require auxin biosynthe-
sis, as shown by disruption of the auxin biosynthetic genes
in maize VANISHING TASSEL2 and SPARSE INFLORESCENCE1
and their rice orthologs OsTAR2/OsFISHBONE and OsYUC1
(Gallavotti et al., 2008; Phillips et al., 2011; Yoshikawa et al.,
2014; Matthes et al., 2019). All are expressed in axillary mer-
istems of the inflorescence.

Auxin flux through the epidermis converges on small
regions of the IM, a process regulated by the auxin influx
carrier ZmAUX1 (SvAUX1 in S. viridis (Zhu et al., 2021a,
2021b) and the auxin efflux carrier SISTER OF PINFORMED1
(SoPIN1/ZmPIN1D; O’Connor et al., 2014; Matthes et al.,
2019; Figure 4). Loss-of-function mutations in SvAUX1/
SPARSE PANICLE1 reduce all orders of branching in the inflo-
rescence, whether primary, secondary, tertiary, or higher, al-
though the effect in maize is less striking than in S. viridis
(Huang et al., 2017; Zhu et al., 2021a, 2021b). Vein pattern-
ing is controlled by PIN-FORMED1a (PIN1a) and PIN1b,
which move auxin away from the local maxima and estab-
lish the position of vascular tissue (O’Connor et al., 2014).
SoPIN1/ZmPIN1D is shared by all angiosperms except
Brassicaceae, where the gene appears to have been lost

*
*

*
*

rice

maize
tassel

maize
ear

barley
wheat

spikelet

suppressed
bract

Figure 3 Inflorescence diagrams of rice (O. sativa), barley (H. vulgare),
wheat (T. aestivum), and maize (Z. mays). Spikelets indicated by ovals
(green); suppressed bracts, arcs below the ovals (orange). IMs lacking
a terminal flower indicated by asterisks (magenta).
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(O’Connor et al., 2014; Matthes et al., 2019). In rice, muta-
tions in OsPIN1a and OsPIN1b primarily affect the root sys-
tem, although PIN1a mutants and the double mutant PIN1a
PIN1b exhibit increased branch angle in the inflorescence (Li
et al., 2019a, 2019b). The single mutants PIN1c and PIN1d
had no effect on the inflorescence, but the double PIN1c
PIN1d mutant abolished all inflorescence branching (Li et al.,
2019a, 2019b). The wheat TaPIN1proteins also affect spikelet
number and grain number per inflorescence (Yao et al.,
2021).

ZmPIN1a is phosphorylated by BARREN INFLORESCENCE2
(BIF2), a homolog of Arabidopsis PINOID (McSteen et al.,
2007; Skirpan et al., 2008). Without BIF2, branches do not
initiate. In rice, mutations of OsPID had no effect on inflores-
cence branching although they affected floral organ develop-
ment (Xu et al., 2019).

The auxin/indole-acetic acid (Aux/IAA) proteins form a
large complex family of proteins in the grasses (as in other
plants), but appropriate genetic studies are largely lacking.
Few AUX/IAA mutants are known to have clear effects on
inflorescence branching (Matthes et al., 2019). Two such
genes in maize, BIF1/ZmIAA27 and BIF4/ZmIAA20, are
expressed in the IM and in the central zone of axillary

meristems (Galli et al., 2015). BIF1 and BIF4 interact with
maize activating auxin response factors (ARFs) and appear
to regulate the placement of axillary meristems and to re-
press their formation elsewhere.

Phyllotaxis, a read-out of hormonal signals
In most grasses and their outgroups, the IM produces bracts
and their axillary primary branches in a spiral, a shift from
the distichous phyllotaxis of the vegetative shoot (Kellogg
et al., 2013; Bartlett and Thompson, 2014). Although spiral
inflorescence phyllotaxis is apparently ancestral in the
grasses, all members of Pooideae except the early diverging
genus Brachyelytrum (Kellogg et al., 2013), some
Danthonioideae and many Andropogoneae (Panicoideae)
maintain two-ranked bracts and branches in the inflores-
cence. Also in Pooideae, some inflorescences are two-ranked
but with a divergence angle 5180�, a pattern that is pheno-
typically similar to rice inflorescences with mutations in
ABERRANT PANICLE ORGANIZATION1 (APO1; Ikeda et al.,
2005, 2007). In such inflorescences, the placement of the
bracts does not follow the placement of the leaves (Kellogg
et al., 2013). Truly distichous inflorescences appear in the

auxin AUX/IAA
(BIF1/BIF4) ARF

boundary between
meristem and axis

primary branch
meristem 

suppressed
bract

BA1/LAX1

BA2/LAX2
+
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AUX1
PIN1D

transport

TSH4
OsSPL17

TSH1/NL1/
TRD

LG2b

(maize)

miR156

RA2 (maize)/
  HvRA2c

(barley)

RA1d

(maize)

RA3†
(maize)
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Figure 4 BA1/LAX1 (boundary domain), RA2 (axillary meristem), and TSH4 (suppressed bract) regulatory networks. Subnetworks in boxes are
widely conserved among the grasses. aOrtholog in rice not involved in regulating LAX1LAX2. bNo data on orthologs in other grasses. cRA2/HvRA2
are expressed adjacent to the meristem but not overlapping with BA1 + BA2. dGene absent in rice and barley genomes. Dashed lines indicate reg-
ulatory connection inferred from gene expression and mutant phenotypes, following Yao et al. (2019). For genes with different names in different
species, the first name is the maize gene name (black), second is rice (magenta), and third is barley (cyan).
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crown Pooideae (tribes Brachypodieae, Triticeae, Bromeae,
and Poeae).

Inflorescence bracts are suppressed; axillary
meristem growth is continuous

Bract suppression
In nearly all grasses, inflorescence bracts are suppressed and
are apparent only in early development as narrow ridges
(see e.g. Moncur, 1981; Kellogg et al., 2013), a pattern dis-
tinct from most other angiosperms and grass outgroups in
which inflorescence bracts expand. Conversely, axillary
branches in grass inflorescences grow immediately upon ini-
tiation (Kyozuka 2014; Li et al., 2019a, 2019b). Inflorescence
bract suppression contrasts with that of vegetative growth,
in which the leaves expand but the axillary meristems gener-
ally fail to grow out immediately (Kyozuka 2014). However,
bracts do expand in some parts of the inflorescence of
Bambusoideae, many Andropogoneae, and possibly in
Anomochloa, although the morphology of the latter is com-
plex and hard to interpret (Judziewicz and Soderstrom,
1989; Judziewicz et al., 1999; Sajo et al., 2012).

The proteins TASSELSHEATH1 (TSH1) and TSH4 repress
inflorescence bracts; when both are mutated, bracts expand
and axillary meristems are reduced or entirely absent
(Whipple et al., 2010; Xiao et al., 2021). TSH1 is a GATA-
domain zinc finger transcription factor orthologous to
NECKLEAF1 (NL1) in rice and THIRD OUTER GLUME (TRD)
of barley (Houston et al., 2012), which have similar mutant
phenotypes and together are the founding members of the
NL1/TSH1/TRD (NTT) family of proteins. TSH4 is a tran-
scription factor in the SQUAMOSA-PROMOTER BINDING
(SBP)-LIKE (SPL) family; it is orthologous to ZmSBP23 and
the two maize proteins are co-orthologous to OsSP17 (Wei
et al., 2018).

Both TSH4 and TSH1 are expressed in the cryptic bract of
inflorescence branches and act synergistically, with TSH4 up-
stream of TSH1 (Xiao et al., 2021; Figure 4). Together they
regulate the expression of LIGULELESS2 (LG2), encoding a
basic leucine zipper protein that regulates outgrowth of
long branches among many other phenotypes (Walsh and
Freeling, 2002). TSH1 is co-expressed with ZmYABBY15, a
gene expected to be expressed in all leaf-like organs, con-
firming that the minute structure is indeed a bract. Based
on gene expression and mutant phenotypes, Xiao et al.
(2021) suggest that the maize SPL proteins UNBRANCHED2
(UB2) and UB3 may also help regulate TSH1 expression.
UB2 and UB3 are co-orthologous to OsSPL14 (Chuck et al.,
2014) and may control allocation of cells to lateral organs in
general.

TSH1 and the NTT proteins NTT-like1 and NTT-like2 all
share a HAN domain with the dicot proteins related to
HANABA TARANU (HAN; Whipple et al., 2010), although
the NTT proteins are all more closely related to each other
than any of them is to the dicot proteins. Despite the se-
quence similarities among grass (NTT) and dicot HAN pro-
teins, HAN does not regulate bract development, even

though bracts are suppressed in Brassicaceae. Thus, bract
suppression in the grasses must proceed by a mechanism
quite different from that of Arabidopsis (Whipple et al.,
2010). NTT-like genes are expressed in boundary regions in
outgroups of the grasses, but early in grass evolution TSH1
acquired SBP binding sites in its promoter, bringing it under
the control of TSH4 and causing bract expression (Xiao
et al., 2021). In this position, TSH1 retains its presumed an-
cestral developmental role of suppressing cell division and
growth, as well as a possible role in signaling.

Axillary meristem growth: the BA1/LAX1 network
Signaling centers adjacent to axillary meristems appear to
specify which cells develop as part of the bract, which be-
come part of the meristem, and which cease dividing en-
tirely and form a boundary. Regulatory proteins in these
centers likely also activate mobile factors that then move
into the meristem (Whipple, 2017). Such regulatory proteins
include a conserved basic helix–loop–helix transcription fac-
tor, LAX PANICLE1 (LAX1 in rice, orthologous to BARREN
STALK1, BA1, in maize) that is required for axillary branch
formation (Komatsu et al., 2003a, 2003b; Gallavotti et al.,
2004; Figure 4). In all grasses that have been investigated,
the underlying genes are expressed in the boundary between
the axillary meristem and the axis that bears it (Komatsu
et al., 2003a, 2003b; Gallavotti et al., 2004; Oikawa and
Kyozuka, 2009; Woods et al., 2011). BA1/LAX1 mutations do
not affect bract formation so are specific to the region just
adaxial to the meristem. The auxin transport protein BIF2
(OsBIF2 in rice) physically interacts with and phosphorylates
BA1 (Skirpan et al., 2008).

BA1/LAX1 interacts directly with BA2/LAX2, a nuclear-lo-
calized protein that is conserved in grasses (Figure 4). The
expression domains and mutant phenotypes of BA1/LAX1
and BA2/LAX2 overlap, further supporting their involvement
in the same pathway (Tabuchi et al., 2011; Yao et al., 2019).
BA1/LAX1 is expressed in BA2/LAX2 mutants and vice versa,
indicating that the proteins do not regulate each other’s
transcription (Tabuchi et al., 2011; Yao et al., 2019).

Other regulators of BA1/LAX1 have been identified in
maize and rice but have been investigated in only one of
the two species. For example, MONOCULM1 (MOC1) in
rice, a transcription factor with a GRAS domain similar to
that of LATERAL SUPPRESSOR in Arabidopsis, positively reg-
ulates LAX1 (Li et al., 2003). MOC1 mutants have fewer
branches in the inflorescence (Li et al., 2003), and the LAX2
MOC1 double mutant lacks branches entirely (Tabuchi et al.,
2011). Mutants in MOC1 orthologs have not been described
in other grasses.

Likewise, BARREN STALK FASTIGIATE1 (BAF1) in maize,
an AT-hook domain DNA binding protein with a plant-
specific Plant and Prokaryote Conserved domain, positively
regulates BA1 although the two do not interact directly
(Gallavotti et al., 2011). In BAF1 mutants, axillary meristems
are fused to the axis, but bracts are unaffected (Gallavotti
et al., 2011). BAF1 may also regulate axillary meristems di-
rectly, bypassing BA1 (Matthes et al., 2019). The BAF1
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ortholog in rice affects floral development and is known as
PALEALESS1 or DEPRESSED PALEA1 (DP1; Jin et al., 2011).
However, a branching phenotype is not reported in rice, nor
is a floral phenotype in maize.

Expression of RAMOSA2 (RA2, orthologous to barley
HvRA2(VRS4) and rice OsRA2) marks the position of primary
and secondary BMs in maize, sorghum, rice, and barley
(Bortiri et al., 2006; Figure 4). RA2 is a Lateral Organ
Boundaries (LOBs)-domain transcription factor that is con-
served in grasses (Bortiri et al., 2006; Koppolu et al., 2013),
and has a grass-specific sequence upstream of the LOB do-
main (Koppolu et al., 2013). In normal development, the IM
in both maize and barley produces short lateral branches
each of which produces only two (maize) or three (barley)
spikelets (Figure 3); in the maize and barley literature, the
meristems producing these short branches are known as a
spikelet pair meristem and a triple mound, respectively.
Mutations in RA2 and HvRA2 permit the short branches to
continue growth, leading to a branch with unpaired spike-
lets in maize (Bortiri et al., 2006), and a branch-like central
spikelet and fertile lateral spikelets in barley (Koppolu et al.,
2013). This continued growth reflects a delay in terminal
spikelet formation, also described as loss of determinacy. In
contrast, downregulation of OsRA2 did not affect branching
but pedicel length increased, indicating that the normal
function of the protein in rice is to prevent growth of spe-
cific tissues, but possibly not inflorescence branches (Lu
et al., 2017). Branch length was not affected, although over-
expression of OsRA2 reduced the number of secondary
branches.

Opposing regulatory gradients of miR156-SPL
control branching
Some developmental decisions can be described as transi-
tions and gradients, with the gradients often running in op-
position to each other. microRNAs and their targets have
become well known for setting up such opposing gradients.
For example, the microRNA miR156 is upregulated by SPL
proteins; it then cleaves the corresponding SPL transcript in
a negative feedback loop, a process initially elucidated in
vegetative to reproductive phase change in Arabidopsis and
maize (Chuck et al., 2007a, 2007b; Poethig, 2009; Wu et al.,
2009). In Arabidopsis, as miR156 expression decreases, SPL3
expression goes up, increasing expression of LFY, AP1, and
FUL (Yamaguchi et al., 2009).

In grasses, several SPL proteins and their regulatory
microRNAs control the transition from branching to spikelet
production. The rice genome includes 19 OsSPL loci, 11 of
which could be targets of miR156 based on sequence com-
parisons (Xie et al., 2006; Yang et al., 2008); comparable
numbers in maize are 30 and 18, respectively. Many rice SPL
loci were discovered initially as quantitative trait loci in stud-
ies aiming to improve grain number; because of that history,
many have been named more than once in the literature. A
full list of alternative gene names is in Supplemental Table
S1. Among the loci with miR156 binding sequences are

OsSPL6 (ZmSBP6, 17), OsSPL8 (ZmLG1), OsSPL13 (ZmSBP13,
29), and OsSPL16, OsSPL18 (the latter two co-orthologous to
TEOSINTE GLUME ARCHITECTURE1 (TGA1), NEIGHBOR
OF TGA1 (NOT1), and ZmSBP5; Wei et al., 2018). Other
highly expressed OsSPL loci include OsSPL7, OsSPL14, and
OsSPL17 (Wang et al., 2015).

OsSPL14 (orthologous to maize UB2 and UB3) has received
particular attention (Jiao et al., 2010; Miura et al., 2010).
Increased transcription of OsSPL14 leads to more primary in-
florescence branches (Huang et al., 2016), and heterozygotes
were strongly over-dominant for yield (reflecting higher ulti-
mate numbers of spikelets; Figure 5A). Mutation of the
miR156 binding site also increased OsSPL14 expression and
yield (Jiao et al., 2010). Overexpression of OsSPL14 or inhibi-
tion of miR156 both led to early transition from BMs to
SMs. Consistent with this interpretation, expression of
FRIZZY PANICLE1 (FZP1; a spikelet marker, see below) was
higher and FZP was expressed in meristems that might oth-
erwise have produced branches (Wang et al., 2015). Mutant
phenotypes of OsSPL14 and OsSPL17 are similar, with double
mutants (RNAi) showing enhanced effects.

OsMADS34/PAP2

OsSPL14/UB2,UB3
OsSPL7

miR156

OsSPL18

DEP1
miR172

IDS1/OsIDS1
SIDS/SNB
Q

Axillary 
meristem

Bract
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expanded
(glume)

suppressed expanded
(lemma)

floral
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miR156
miR172

TSH4/OsSPL17
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VRN1,FUL2, FUL3
OsMADS34
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Figure 5 A, miR156-SPL-miR172-AP2-like regulatory networks. B,
Developmental window showing the transition from axillary BMs to
spikelet formation, with major genes marking each stage and opposing
gradients of microRNAs. Species- and clade-specific inflorescence mor-
phology is influenced by the developmental timing of the transition;
shorter time causes a faster transition to glume production which in
turn leads to fewer branches and vice versa. In rice, transition time
appears to vary continuously across the inflorescence; in maize, transi-
tion time is bimodal (long and short, but nothing in between); in bar-
ley, transition time is unimodal, only short. Portions of the figure are
redrawn from Wang et al., (2015, Supplemental Figure S16).
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The complex of APO1, an F-box protein and APO2 (RFL),
a homolog of Arabidopsis LEAFY, also delays the
transition from BMs to producing glumes (Ikeda et al., 2005;
Ikeda-Kawakatsu et al., 2009, 2012). When the LFY homologs
ZFL1 and ZFL2 are mutated in maize, the transition to nor-
mal tassel branches is also delayed and axillary meristems
develop in husk leaves of the ear (Bomblies et al., 2003).

The direct interaction of APO1 and APO2 appears to be
conserved in plants, having been demonstrated in
Arabidopsis (orthologs UNUSUAL FLORAL ORGANS and
LFY, respectively), rice, and barley (Chae et al., 2008;
Kyozuka, 2014; Selva et al., 2021). However, the two proteins
delay the transition to spikelet formation in rice and maize
in whereas they promote flower formation in Arabidopsis
(Kyozuka, 2014). Their role in barley is still different, in that
disruption of HvLFY does not affect inflorescence architec-
ture nor does it affect expression of APETALA1/FRUITFULL
(FUL)-like (FUL-like) genes, as might be expected if it af-
fected spikelet formation (Selva et al., 2021). WFL (ortholog
of LFY in wheat) is expressed in the bracts (lower ridge) be-
low the spikelets, but not in the spikelets themselves
(Shitsukawa et al., 2006); its mutant phenotype is unknown.

Control of secondary and higher order
branches is species- and position specific
Both the number and morphology of secondary and higher
order branches vary among cereal grasses (Figure 3), among
genera within a tribe (e.g. Cynodonteae; Pilatti et al., 2019),
and among species within a genus (e.g. Setaria; Doust and
Kellogg, 2002). The range of natural variation suggests that
genetic control of secondary branches may be partially inde-
pendent of the control of primary branches, a hypothesis
supported by genetic data.

Secondary branching in rice
Primary and secondary branches are controlled indepen-
dently in rice, even though all branches are morphologically
similar (Harrop et al., 2019; Bai et al., 2021). For example,
double mutants of LAX1LAX2 (described above), have no
visible defect in primary branches but lack secondary
branches and spikelets altogether (Tabuchi et al., 2011).
Allelic variation has been explored extensively in FZP1 (see
also below), an AP2/EREBP transcription factor (Bai et al.,
2017; Fujishiro et al., 2018; Huang et al., 2018; Wang et al.,
2020), where mutations in the promoter affect the binding
of transcription factors and thereby expression levels. An al-
lele of FZP1 originally known as CONTROL OF SECONDARY
BRANCH1 acts particularly on secondary branches (Huang
et al., 2018). A small deletion in the promoter of FZP1
reduces binding of the ARF OsARF6 and reduces FZP expres-
sion, leading to increased cell division and more secondary
branches, but no changes in primaries.

In addition, FZP1 interacts with and is degraded by
NARROW LEAF 1 (NAL1), a serine/cysteine protease.
Downregulation of FZP1 along with upregulation of NAL1
improved yield in rice (Huang et al., 2018), again by

increasing secondary branches. NAL1 is expressed through-
out the plant, particularly in vascular tissues (Qi et al., 2008),
whereas FZP1 is expressed only in the inflorescence.

Knockout of OsSPL18 significantly reduces the number of
secondary branches, and OsSPL18 is itself cleaved by
OsmiR156k (Yuan et al., 2019). OsSPL18 binds to the pro-
moter of DENSE and ERECT PANICLE1 (a G-protein c subu-
nit; Xing and Zhang, 2010; Liu et al., 2021) and activates it
(Yuan et al., 2019), thereby increasing cell numbers.
Mutations in OsSPL9, the gene underlying the mutant LESS
GRAIN NUMBER5, exhibited less than half the number of
secondary branches as wild-type indica lines, although pri-
mary branch number was unaffected (Hu et al., 2021).

Overexpression of RICE CENTRORADIALIS1 and 2 (RCN1,
RCN2), homologs of CENTRORADIALIS/TERMINAL FLOWER1,
led to increased panicle branching in rice (Nakagawa et al.,
2002; Wang et al., 2015), indicating that the primary func-
tion of the RCNs is to reduce branching, perhaps by acceler-
ating the transition to spikelet formation. Overexpression of
RCN rescued the effects of OsSPL14 and OsSPL17 RNAi lines
on secondary branches but did not affect primary branches
(Wang et al., 2015).

OsMADS34/PANICLE PHYTOMER2 (PAP2) in rice also
controls the relative numbers of primary and secondary
branches (Gao et al., 2010; Kobayashi et al., 2010) with the
normal function to reduce numbers of primary branches.
The effect on secondary branching is unclear, with some
mutations leading to more secondary branches and hence
spikelets (Kobayashi et al., 2010), while others reported
mutations lead to fewer (Gao et al., 2010).

The regulatory networks controlling secondary branch for-
mation in rice may be relevant in other species with open
branching inflorescences such as the closely related genus
Zizania (North American wild rice) or the distantly related
genera Panicum (switchgrass) or Megathyrsus (guinea grass).
However, other species have distinct architecture and are
hard to compare to rice (Figure 3).

Secondary branching in maize: spikelet pairs
Maize produces long and short inflorescence branches. In
the tassel, the first-formed primary branches are long,
whereas later ones are short, producing exactly two spikelets
(spikelet pairs; Figure 3). In these, one spikelet is lateral (i.e.
a secondary branch) and the other is terminal. Primary
branches in the ear are also short (spikelet pairs) as are sec-
ondary branches in the tassel.

The maize branch regulator RA2 is genetically upstream of
RA1, which has a similar mutant phenotype in which spike-
let pairs are converted to longer branches, often with single
spikelets (Vollbrecht et al., 2005; Bortiri et al., 2006;
Figure 4). RA1 is a C2H2 zinc-finger transcription factor con-
taining two Ethylene-responsive element binding factor-
associated Amphiphilic Repression (EAR) domains
(Vollbrecht et al., 2005). RA1 interacts directly with
RAMOSA ENHANCER LOCUS1 (REL1), orthologous to
ABERRANT SPIKELET AND PANICLE1 (ASP1) in rice
(Gallavotti et al., 2010; Tanaka et al., 2013). REL1/ASP1 is
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a protein with an AT-hook domain similar to TOPLESS
in Arabidopsis and is thought to be a transcriptional
co-repressor. However, because rice lacks a RA1 locus
(Vollbrecht et al., 2005), the interactors of ASP1 are unclear.

RA3, a trehalose-6-phosphate phosphatase (TPP) in maize,
is genetically independent of RA2 although it also affects
the short branch/spikelet pair meristem (Satoh-Nagasawa
et al., 2006; Figure 4). TPP may link sugar metabolism to
signaling, since other TPPs repress SUCROSE-NON-
FERMENTING1-RELATED KINASE1 and also miR156 which in
turn negatively regulates SPL proteins (Eveland and Jackson,
2012; Tsai and Gazzarrini, 2014). However, RA3 co-localizes
with RNA POLYMERASE II in nuclear speckles (Demesa-
Arevalo et al., 2021), and an RA3 construct lacking phospha-
tase activity will still complement the ra3 mutant (Claeys
et al., 2019). Together these observations suggest a transcrip-
tional regulatory role for RA3 separate from its role as an
enzyme.

Secondary branching in barley: triplets of spikelets
RA1 and RA3 are absent from genomes in the BOP clade, so
rice, barley, wheat, and other related species must have dis-
tinct pathways regulating higher order branching (Vollbrecht
et al., 2005; Doust, 2007; Kellogg, 2007). In barley, the pri-
mary branches are short and terminate in a spikelet, but be-
fore terminating they produce exactly two lateral (secondary
branch) spikelets. While this complex of three spikelets is
formed from a triple meristem, in barley relatives such as
Elymus and Leymus the number of secondary spikelets varies
from one to three depending on the species (POWO, 2021).

The controls of secondary (lateral) branching in barley re-
flect a complex network involving branching, glume forma-
tion, and floral organ development (Gauley and Boden,
2019). Branching itself (i.e. formation of the laterals) is gov-
erned by HvRA2 but proteins regulated by HvRA2 differ
from those of maize RA2, which is unsurprising given the
lack of RA1 and RA3 in barley (Figure 4). As in maize, a TPP
protein is genetically downstream of HvRA2, but the barley
TPP protein is HvSRA, which is not orthologous to RA3 but
rather belongs to the SISTER OF RA3 (SRA) clade of TPPs
that is conserved in grasses. SRA is apparently not involved
in inflorescence development in maize (Satoh-Nagasawa
et al., 2006). HvRA2 upregulates VRS1/HOX1, a homeodo-
main leucine zipper transcription factor that is the result of
a gene duplication specific to Triticeae (Komatsuda et al.,
2007; Koppolu et al., 2013; Sakuma et al., 2019). The HOX1/
HOX2 clade is in turn sister to orthologs of GRASSY
TILLERS1 in maize (Whipple et al., 2011). Recent work on
barley MADS-box transcription factors also suggests they
regulate inflorescence branching, possibly in response to
temperature, in addition to their expected function in floral
organ identity (Kuijer et al., 2021; Li et al., 2021a, 2021b,
2021c). Thus, despite the conserved LOB-domain transcrip-
tion factors (RA2 and HvRA2) and the involvement of a
TPP protein, the controls of spikelet pairs and lateral
branches in Triticeae differ from those in other grasses.

Spikelet bracts (glumes) expand, axillary bud
growth is suppressed

Glume production is common but not a necessary
marker of a transition to floret production
The shift from a BM with suppressed bracts and active axil-
lary meristems to a spikelet-producing meristem is clear in
many grasses, with the SM producing exactly two macro-
scopic bracts (glumes) with suppressed axillary meristems,
followed by one or more large bracts (lemmas) subtending
FMs. However, that transition may be protracted, with some
species producing more than two glume-like structures. For
example, the glumes in rice are tiny and known as rudimen-
tary glumes (Figure 2). Distal to the glumes are two struc-
tures in the position of florets that also fail to produce
axillary FMs. Although many lines of evidence support the
inference that these are sterile lemmas, they are expanded
bracts without an axillary meristem so share some character-
istics with glumes. Mutations in G1/LONG SLENDER
LEMMA1 (Yoshida et al., 2009; Yang et al., 2020) shift the
size and cellular morphology of the sterile lemmas to look
more like true lemmas, whereas mutations in other genes
lead to stronger similarity between the sterile lemmas and
rudimentary (true) glumes (summarized by Ren et al., 2018;
Xu et al., 2020). However, none of the mutants leads to pro-
duction of an axillary FM, as would be expected if the sterile
lemmas were fully converted to true lemmas. Other species
(e.g. Chasmanthium) have multiple sterile lemmas, whereas
many Bambusoideae bear pseudo-spikelets, which are sub-
tended by glume-like structures with axillary meristems that
themselves produce spikelets, somewhat reminiscent of FZP
mutants (see below).

Conversely, the absence of glumes is well documented in
some species of grasses, including many members of
Oryzeae (some of which also lack sterile lemmas), as well as
Nardus and Lygeum in the tribe Nardeae (subfamily
Pooideae), tribe Orcuttieae (Chloridoideae), Piresia
(Bambusoideae), and others (Kellogg, 2015).

The relative timing of glume production determines the
overall architecture of the inflorescence and thereby the po-
tential for seed production. In all grasses studied, meristems in
the axils of glumes are suppressed by BRANCHED SILKLESS1
(BD1; maize)/FZP1; rice), orthologs of which have been charac-
terized in B. distachyon, barley, and wheat (Chuck et al., 2002;
Komatsu et al., 2003; Zhu et al., 2003; Derbyshire and Byrne,
2013; Dobrovolskaya et al., 2015; Poursarebani et al., 2015).
Meristems form in the axils of glumes in BD1/FZP1 mutants,
and these axillary meristems each produce glumes with axillary
meristems. FZP is thus central to the transition from BM with
suppressed bracts to SM with suppressed axillary meristems.
The broad phylogenetic distribution of these systems indicates
that the function of FZP1 orthologs is likely conserved among
all spikelet-bearing grasses.

BD1/FZP1 is a transcription factor with a single AP2 do-
main, and part of the AP2/ERF clade similar to PUCHI in
Arabidopsis (Chandler, 2018), which also specifies axillary
meristems in the inflorescence (Karim et al., 2009). Unlike
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BD1/FZP1, PUCHI appears to promote axillary meristem
(flower) growth rather than suppress it. The sequence of the
BD1/FZP AP2 domain is conserved across grasses. Two FZP1
homologs have been identified in the genome of Pharus lati-
folius, a member of the subfamily Pharoideae that is sister to
all other spikelet-bearing grasses (Ma et al., 2021; Figure 1),
although only one gene is expressed in young inflorescences.

Transition from producing suppressed bracts to
producing glumes controls numbers of branches,
particularly secondaries
Within the inflorescence and along each branch, gradients of
gene regulation, particularly via miR172 and euAP2-like genes,
control the transition from BM production (suppressed
bracts) to SM production (expanded bracts; Wang et al.,
2015; Figure 5B). The relative speed of this transition controls
the architecture of the inflorescence (Kyozuka, 2014).

euAP2-like genes have two AP2 domains (Kim et al.,
2006), rather than the single domain found in FZP. In addi-
tion, nearly all genes in this group also have miR172 binding
sites (Seetharam et al., 2021) and miR172 expression opposes
expression of AP2-like genes (Figure 5A). The AP2-like-
miR172 interaction has been investigated for its role in spec-
ifying the number of florets per spikelet (e.g. Chuck et al.,
2007, 2007b, 2008; Zhu et al., 2009), but another important
role of AP2-like-miR172 is to delay production of glumes,
thereby prolonging branching.

In single and double mutants of the rice AP2-like genes
INDETERMINATE SPIKELET1 (OsIDS1) and SUPERNUMERARY
BRACT (SNB), the IM and BMs were converted precociously
to spikelets, leading to fewer branches (both primary and
secondary), with the number varying in a dose-dependent
manner (Lee and An, 2012). Mutant spikelets had extra rudi-
mentary glumes, indicating that the meristem had made a
transition from producing suppressed bracts (as in a branch)
to producing glumes (as in a spikelet), but had failed in the
subsequent transition to FM production (Lee and An, 2012).
Consistent with this interpretation, FZP expression appeared
earlier in BMs of the mutants than in wild-type.
Overexpression of miR172 in rice produced a phenotype
similar to that of the OsIDS1 SNB double mutant. Mutations
in the orthologous genes in maize (IDS1 and SISTER OF IDS
[SIDS]) showed similar phenotypes, with fewer branches and
extra glumes (Chuck et al., 2008).

In wheat, the IDS ortholog is the domestication gene Q
(Seetharam et al., 2021), which is also regulated by miR172
(Debernardi et al., 2017). The transition to forming glumes is
particularly obvious in wheat because the glumes have promi-
nent keels, shorter awns, and more sclerenchyma than lem-
mas. Reduction of miR172 led to higher levels of Q (AP2-5)
and greater similarity between glumes and lemmas.
Conversely high levels of miR172 and loss-of-function AP2-5
led to sterile lemmas. In the lowermost spikelets, the transition
between glumes and lemmas appeared particularly malleable,
such that more miR172 and less AP2-5 could lead to glume-
like organs in the position of lemmas (i.e. sterile lemmas).

Some SPL proteins, such as OsSPL7 and OsSPL14, directly
regulate miR172 in rice and accelerate the transition to pro-
ducing glumes (Wang et al., 2015; Figure 5A). The mutant
phenotype caused by overexpression of either SPL locus was
returned to normal by knockdown of miR172.
Overexpression of RCN1 and RCN2 also led to increased
panicle branching in rice by delaying the transition to SMs
(Nakagawa et al., 2002; Wang et al., 2015).

TAWAWA1 is an ALOG protein that controls the timing
of IM degeneration in rice and also the transition from BM
to spikelet formation (Yoshida et al., 2013). Kyozuka (2014)
has proposed that TAW1 is central to meristem mainte-
nance in the IM and BMs, with lower levels leading to early
IM abortion and accelerated transition from BMs to spikelet
formation. TAW1 regulates SHORT VEGETATIVE PHASE
(SVP) genes, which encode MADS-box transcription factors
(Arora et al., 2007; Lee et al., 2007).

SM identity reconsidered
The existence of axillary signaling centers and gradients of
developmental signals suggests that SM identity may be
achieved by the confluence of several gene expression pat-
terns that, when overlapping, produce the stereotypical grass
spikelet. However, such patterns could also activate SM
identity genes that are both necessary and sufficient to spec-
ify a structure as a spikelet. SEP-like and FUL-like MADS-box
genes are good candidates for SM identity controls
(Bommert and Whipple, 2018) as are the SPL proteins
TGA1 and NOT1 (Preston et al., 2012).

MIKC-type MADS-box genes are well known as homeotic
selector genes and some aspects of their function, particu-
larly B-class (generally inner perianth and stamen expression
patterns) and C-class (generally stamen and carpel expres-
sion) are conserved between dicots and grasses (Bommert
et al., 2005). In contrast, the A-class function, originally
thought to specify sepal identity and attributed to AP1, has
been elusive (Litt and Irish, 2003; Litt, 2007). Grasses lack an
ortholog of the dicot AP1 and instead have three loci that
are more closely related to FUL in dicots (Preston and
Kellogg, 2006, 2007). The three proteins, VERNALIZATION1
(VRN1; unrelated to the Arabidopsis protein of the same
name), FUL2, and FUL3, affect plant height and flowering
time in wheat, rice, Brachypodium, and Setaria (Yan et al.,
2003; Kobayashi et al., 2012; Ream et al., 2014; Li et al., 2016;
Woods et al., 2016; Li et al., 2019a, 2019b; Yang et al., 2021).

VRN1 and FUL2 are expressed throughout the spikelet
(glumes plus florets) in Lolium (ryegrass), Triticum, Hordeum,
Avena, and Setaria (Gocal et al., 2001; Preston and Kellogg,
2008; Preston et al., 2009; Alonso-Peral et al., 2011; Yang
et al., 2021), as well as being expressed in the IM and BM.
Knockout of VRN1FUL2 or VRN1FUL2FUL3 in both genomes
of tetraploid wheat specifically affected SM identity, consis-
tent with their expression patterns (Li et al., 2019a, 2019b).
In the mutants, the lower ridge expanded to form a leaf and
the spikelet (the sole product of a primary branch) was
replaced by a leafy tiller-like structure. Thus the ability of
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the IM to position and form the subtending bract is not
compromised but spikelet identity is disrupted. Having ei-
ther VRN1 or FUL2 is enough to make a terminal spikelet
and repress the wheat homologs of RCN; FUL3 controls tim-
ing of (accelerates) terminal flower production (Li et al.,
2019a, 2019b). The balance between the FUL-like proteins
and SVP proteins determines whether spikelets form nor-
mally in wheat, or whether they develop into tiller-like
branches (Li et al., 2021a, 2021b, 2021c).

The rice proteins OsMADS5 and OsMADS34 (=PANICLE
PHYTOMER2) add another layer of regulation. Like wheat
VRN1 FUL2 FUL3 null triple mutants, the rice OsMADS14
OsMADS15 OsMADS18 PAP2 quadruple mutant replaces pri-
mary branches with vegetative tiller-like structures
(Kobayashi et al., 2012; Li et al., 2019a, 2019b). In rice,
OsMADS5 and OsMADS34 directly regulate RCN4 and accel-
erate the transition to spikelet production. Double mutants
of OsMADS5 OsMADS34 or OsMADS34 RCN4 produce more
branches, including secondary, tertiary, and even quaternary
branches (Zhu et al., 2021a, 2021b). OsMADS34 promoters
also contain SPL binding motifs, and OsMADS34 is directly
regulated by OsSPL14 (Wang et al., 2015).

Mutations in OsMADS34 have no effect on rudimentary
glumes, although the gene is expressed there; sterile lemmas
in the mutants are morphologically similar to true lemmas
but still do not produce axillary FMs (Gao et al., 2010).
LACKING RUDIMENTARY GLUME 1 (LRG1) is also involved
in glume and sterile lemma identity. In an unexpected ex-
ample of regulatory convergence, LRG1 is a C2H2 transcrip-
tion factor similar (although not orthologous) to RA1, with
similar EAR repression domains and interactions with a
TOPLESS-like protein (Xu et al., 2020). A full discussion of
rice spikelet morphology is beyond the scope of this paper
but will be interesting to pursue in the future.

Lee and An (2015) noted that expression of FUL-like
MADS-box genes was unaffected in SNB OsIDS double
mutants. One interpretation is that SNB and OsIDS are
needed to establish the domain within which the FUL-like
proteins can specify spikelet identity. Such an interpretation
awaits additional data.

The SPL protein TGA1 acquired its current expression do-
main in the spikelet-bearing grasses (Preston et al., 2012)
and is another candidate for conferring spikelet identity. In
all grasses examined, it is expressed in the florets and both
glumes. However, it is expressed only in the flower (not the
floral bracts) of the grass outgroup Joinvillea ascendens.
Thus, the grass expression pattern represents an expansion
of floral control to encompass the bracts. Regulation of TGA
expression has not been explored, although the miR156
binding site is conserved among grasses and their outgroups
(Preston et al., 2012).

Summary: conservation and diversity
The controls of inflorescence architecture are strikingly simi-
lar among many grasses (Figure 5B). Auxin transport and
signaling use orthologous proteins retaining similar

biochemical functions, interactions, and developmental roles
in most species. Likewise, conserved mechanisms specify the
position and development of suppressed bracts via SBP pro-
teins such as OsSPL18 and TSH1. BA1 and BA2 and their
regulators and targets also appear conserved in positioning
and delimiting axillary meristems. Spikelets are marked by
formation of glumes; suppression of their axillary meristems
is controlled by FZP/BD. Timing of transitions from IM to
BM to SM is controlled by opposing gradients of miR156-
SPL-miR172-AP2-like gene expression. This unifying mecha-
nistic picture offers insights that may be applicable to less
well-studied crops, as well as wild grasses.

Despite this broad similarity, many other mutant pheno-
types have been observed only in a single species; it is
unclear whether such gene functions are indeed phylogenet-
ically restricted or if data on other species are simply lacking.
For example, DP1 is the rice homolog of BAF1 and may
have a different developmental role; however, the requisite
data are not available. Allelic variation in FZP has been dis-
sected carefully in studies in rice attempting to maximize
yield, but no comparable data are available for BD1 in maize.
Likewise, sets of genes control secondary branches (products
of the primary BM) independent of primary branches (prod-
ucts of the IM) in rice, indicating that these two meristems
are developmentally distinct, but few comparisons are avail-
able for other species.

In other cases, whole-genome sequences show that critical
proteins that are critical for one species are simply absent in
others. For example, RA1 and RA3 are not present in
genomes of species of the BOP clade, implying that their
function in rapid transition to a terminal spikelet in the
short-branch (spikelet pair) meristems of maize and sor-
ghum may be species- or clade specific. Genes that are ge-
netically downstream of HvRA2 also differ from those
genetically downstream of RA2 in maize, suggesting that
each gene network may be only applicable in close relatives
of barley or maize, respectively. Such presence–absence vari-
ation is only beginning to be explored.

In the future, we can anticipate identifying additional reg-
ulatory networks that make grass inflorescences so similar as
well as the network components that make individual spe-
cies morphologically distinct. The conserved components
may be expected in all grasses, including orphan crops,
whereas the variable components await analysis in disparate
species.
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